Bonding to dentine: How it works

The future of restorative dentistry

There are 82 adhesive systems on the market today!

Are dentists confused about bonding?

Enamel : Constituents by Volume

Michael Buonocore

Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J.Dent.Res.1955:34(6):849-853.

Composites can be pretty!

and, bonding to enamel is easy

History Of Bonding		
Year	Discovery	Main Points
1955	Acid Etching	Buonocore advocates etching to achieve better bonding to tooth structure
1963	Recognition Of Different Substrates	Buonocore discusses differences in bonding to enamel and dentin
Late 1960´s	Resin Tags	Buonocore discusses resin tags as the principal adherents to etched enamel
1990´s	Shorter Etching Time	15 Seconds is about enough for dentin

COMPOSITION OF DENTINE 70% Inorganic 20% Organic 10% Water

Bonding to dentine is therefore more difficult

Why do dentists need adhesion?

- Cervical restorations
- Build up of fractured anterior and posterior teeth
- Short clinical crown for full or partial coverage restorations
- Resin retained bridges

Bonding to dentine Chemical = Glass ionomer Micromechanical = Dentine bonding systems

'There is no evidence of any chemical reaction of any dentine bonding system to hydroxyapatite, except for polycarboxylate'

D.C.Smith, 1989

Glass Ionomer Cement

 A cement that consists of a basic glass and an acidic polymer which sets by an acid-base reaction between these components
 McLean et al., 1994

The Glass Ionomer Family

- Traditional glass ionomers
- Glass ionomer luting materials
- Cermets
- Resin-modified glass ionomer (RMGI)
- Reinforced glass ionomers :ART materials
- RMGI luting materials

Characteristics of Glass lonomers

- Release of fluoride
- Adhesion to enamel and dentine
- Biocompatibility
- Low thermal diffusivity
- Initial reaction to moisture
- Marginal integrity

Characteristics of Glass lonomers

- Finishing and polishing
- ? To etch: The sandwich technique
- Aesthetics
- Mechanical strength
- Erosion and abrasion resistance

Uses of glass ionomer materials

- Class III and Class V restorations
- Liners/bases
- Core build-up/foundation restorations
- Luting materials
- Restoration of deciduous teeth
- Tunnel restorations
- Repair of defective margins
- Temporary/provisional restorations

Resin Modified Glass Ionomers

Hybrid materials that retain a significant acid/base reaction as part of their overall curing process. McLean et al., 1994

Reinforced Glass ionomer materials

- Y Smaller particle size leads to faster reaction
- Y Higher loading brings improved physical properties
- Y Exhibits plastic features can be condensed and packed
- Y Still a need for improved wear resistance
- **Y** Typical glass ionomer features

Take home message

Traditional glass ionomers have poor physical properties and should be confined to history.

Reinforced and RMGI materials are superior.

Maximising class V effectiveness

The survival of Class V restorations in general dental practice: part 3, five-year survival

D. Stewardson,¹ S. Creanor,² P. Thornley,³ T. Bigg,⁴ C. Bromage,⁵ A. Browne,⁶ D. Cottam,⁷ D. Dalby,⁸ J. Gilmour,⁹ J. Horton,¹⁰ E. Roberts,¹¹ L. Westoby¹² and T. Burke¹³

IN BRIEF

- This study reminds dentists that they are the most important factor determining the survival of Class V restorations.
- Presents evidence that has been collected from a large number of restorations placed in dental practices and is therefore likely to be particularly relevant to general practitioners.
- Identifies a number of factors associated with poor restoration survival which can help dentists improve their patient care.

RESEARCH

Objective To evaluate the survival over five years of Class V restorations placed by UK general practitioners, and to identify factors associated with increased longevity. **Design** Prospective longitudinal cohort multi-centre study. **Setting** UK general dental practices. **Materials and method** Ten general dental practitioners each placed 100 Class V restorations of varying sizes, using a range of materials and recorded selected clinical information at placement and recall visits. After five years the data were analysed using the Kaplan-Meier method, log-rank tests and Cox regressions models to identify significant associations between the time to restoration failure and different clinical factors. **Results** After five years 275/989 restorations had failed (27.8%), with 116 (11.7%) lost to follow-up. Cox regression analysis identified that, in combination, the practitioner, patient age, cavity size, moisture contamination and cavity preparation were found to influence the survival of the restorations. **Conclusions** At least 60.5% of the restorations survived for five years. The time to failure of Class V restorations placed by this group of dentists was reduced in association with the individual practitioner, smaller cavities, glass ionomer restorations, cavities which had not been prepared with a bur, moisture contamination, increasing patient age, cavities confined to dentine and non-carious cavities.

Maximising class V effectiveness: what is associated with failure at 5 years?

Restorations involving dentine only: hazard of failure increased by 39%

Large restorations compared with small: hazard of failure increased by 85%

Major or minor moisture contamination: hazard of failure increased by 29%

Preparation method/rotary instrument used: hazard of failure decreased by 40% Maximising class V effectiveness: what material is best at 5 years? Five year survival RMGI 78.6% Amalgam 75% Compomer 71.2% Flowable composite 69% Composite 68.3% Glass ionomer 50.6%

OBJECTIVE

To reliably seal the dentinal tubules

If the tubules are sealed using a **Dentine Bonding** System....

The ideal dentine bonding system should:

Provide an immediate, permanent, highstrength bond to dentine

- Bond to dentine = bond to enamel
- Minimizes microleakage

Show no reduction in bond strength when applied to a moist surface

Be biocompatible with dental tissues

The ideal dentine bonding system should:

Be easy to use and not technique sensitive

Have a good shelf life

Be compatible with a wide range of resins

Not sensitise operators or patients

Seal the cavity and thereby help to prevent recurrent caries

Problems with bonding to dentine

Dentine is 22% water by volume

Polymerisation contraction of resinbased materials

- Smear layer present on dentine surface
- Early polishing of composite
- Different substrates
- Technique sensitivity of (early) dentine bonding agents

Smear Layer

- Thickness -0.5 - 5.0 microns
- Will not wash off
- Weak bond to tooth
 -2-3 MPa
- Very soluble in weak acid

Previous strategies to treat the smear layer

The quality of the hybridised dentine is more important than the bond strength Nakabayashi, 2002

The classification *until recently* of dentine bonding systems

1.Etch and rinse
(etch & bond, total etch)
2.Self etch One bottle
Two bottles

....introducing

a new group of dentine bonding agents

Universal bonding agents

Treatment of the smear layer

 REMOVE (Etch & Rinse/Total etch) LEAVE/PENETRATE (Self etch) UNIVERSAL MATERIALS (Etch & Rinse, Selective enamel etch, Self etch) (use for direct and indirect)

Scotchbond Universal Adhesive

- Works with both Total- and Self-Etch technique, therefore high flexibility in clinical procedures
- Provides procedural simplicity
- Total-etch or Selective-enamel etch for highest enamel bond strength, e.g. incisal edges
- Self-etch for low post-op sensitivity
- Fast technique where isolation is difficult, or with non-co-operating patients

Scotchbond Universal Adhesive: Composition

- •BisGMA
- •MDP
- •Vitrebond Copolymer
- •HEMA
- Ethanol
- •Water
- •Filler
- •Silane
- Initiators

Handling evaluation of 3M ESPE Scotchbond Universal by the PREP Panel

- 12 evaluators
- Variety of bonding agents used pre-study
- 875 restorations placed (Class 1:172, Class II:189, Class III:134, Class IV:178, Class V:182, Other:20)
 Also used for dentinal hypersensitivity, repair of fractured porcelain, bonding of posts.
- A Rated material on visual analogue scales
- 75% of evaluators would be prepared to pay extra for the convenience of single-unit doses
- All stated that the resin liquid easily wet the tooth surface, that the bond was easily visible. Some commented that it was "too yellow"

Handling evaluation of 3M ESPE Scotchbond Universal by the PREP Panel

Ease of use of previous bonding agent

The viscosity of the bonding liquid was rated by the evaluators as follows:

Too thin

5 Too viscous

Handling evaluation of Scotchbond Universal by the PREP Panel: Comments

"Disconcertingly yellow – but OK when thinned or light cured" "Spreads well when air applied" "Supposedly the lid can be opened one-handed but it is sometimes a problem" "First material that compares with G-Bond"

Handling evaluation of Scotchbond Universal by the PREP Panel: Comments

All the evaluators stated that they would purchase if available at average price.

"Extremely useful to have a material that bonds both to indirect restorations as well as the tooth structure. No need for multiple kits of materials. So far has worked well."

Universal bonding agents

new additions are on the way!

Clearfil Universal:what's in it? **10-MDP Bis-GMA** 2-HEMA Hydrophilic aliphatic dimethacrylate **Colloidal silica** Silane coupling agent **Di-Camphorquinone** Ethanol Water

GC G-Premio Bond:What's in it?

4-META 10-MDP **10-Methacroyldecyl** dihydrogen thiophospate Methacrylate ester Acetone **Distilled** water Photoinitiators Silica fine powder

SUMMARY: Universal bonding agents:

Can be used in total etch, self etch, self etch, self etch, selective enamel etch modes

Are compatible with direct & indirect procedures

Can be used with self & dual cure luting materials (with separate activator)

Are suitable primers for silica & zirconia

Can bond to different substrates

...other tips for optimal bonding..

Effects of moisture degree and rubbing action on the immediate resin-dentin bond strength Dal-Bianco K, Pellizzaro A, et al. Dent.Mater.2006 Conclusion:

High bond strength to dentine can be obtained under dry conditions when ethanol/H₂O and acetone based systems are vigorously rubbed on the dentine surface. On wet surfaces, light rubbing may suffice.

Rules for bonding Do not overdry the surface **Etch according to manufacturers'** instructions Try to avoid etching the dentine.

Do not overblow resin layer Rub in the adhesive

Advantages of an adhesive approach

- Tooth and patient friendly
- Potentially better aesthetics
- Can be metal-free
- State of the art (practice building)
- There is increasing evidence that it works
 BUT.....
- Care, time, attention to detail and operator ability paramount

Take home messages

- Dentine bonding is now reliable and effective
- Self etch adhesives do not produce bond strengths as high as etch &
- rinse systems
- Selective etching of enamel is a good idea
- Universal bonding materials with MDP are now the business

The future...

is..... bonding restorations to teeth